
pm_dreamer(1) PM-Dreamer Utilities pm_dreamer(1)

NAME
pm_dreamer - Optimization of functional forms for particle mechanics.

VERSION
Version 0.2

SYNOPSIS
pm_dreamer input_data beagle_config_file [-c] [-f file_header] [-g start_size end_size] [-h] [-n
notice_level] [-p hfc_copy_num] [-r rseed] [-s stat_type] [-t energy_type] [-z]

DESCRIPTION
PM-Dreamer is software for generation of empirical models for particle mechanics. The software takes as
input data from a series of particle configurations and the corresponding energies and/or particle forces
associated with those configurations. The output from PM-Dreamer is a set of functions that can potentially
be used to calculate configuration energies for particles giving the force-field necessary for particle simula-
tions.

PM-Dreamer obtains the equations for energy calculation using a combination of genetic programming and
local search in order to minimize the root-mean square error in the calculation of energy and/or particle
force. The genetic programming is based on the Open-BEAGLE library for evolutionary computation. This
library has been extended in PM-Dreamer to allow for massively parellel optimization, hybrid local search,
vectorized expression evaluation, template-based evaluation of fitnesses using particle configurations with
periodic boundary conditions for 2 and 3-body particle interactions, and parallel restarts with the capability
to switch datasets and/or function templates.

The input for PM-Dreamer consists of theinput_datafile that contains particle configuration data and the
beagle_config_filethat facilitates parameterization of the optimization. The formats available for the
input_dataare described in the Fitness Evaluation section and can be specified with the-t flag. The format
for the beagle_config_fileis taken from Open Beagle with the extensions described throughout this docu-
mentation. Examples for both should have been included with the software package.

There are three types of output for PM-Dreamer. Console output describes the progress and statistics of the
run and is controlled with the-n flag. Log file output also describes statistics in XML as specified in the
beagle_config_file. The default filename for the log file for serial runs is gp_force.log. For parallel runs a
separate log file is written for each process with the default name gp_force_RR.log where RR is the process
rank. The final output format consists of milestone files. These files contain an XML description of all of
the expressions at a given point in the optimization and are also used to restart runs. The default name for
the milestone files is gp_force.obm for serial or gp_force_RR.obm for parallel runs. Utilities for generating
plots from the log files and graphic representations of expressions should have been included with this soft-
ware package.

The following definitions are used throughout the documentation:

Individual A single mathematical expression for calculation of the energies of particle configura-
tions.

Primiti ve A primitive is a node in the expression tree. Examples of primitives include unary and
binary mathematical expressions, variables used to describe the particle configurations, and con-
stants in the expression.

pm_dreamer (PM-Dreamer Utilities) 0.2 March 30, 2010 1

pm_dreamer(1) PM-Dreamer Utilities pm_dreamer(1)

Terminal/Constant/Ephemeral A terminal is a primitive that takes no arguments. A con-
stant/ephemeral is a terminal that is not used as a variable in the expression. Constants are typi-
cally randomly generated and can change during the optimization by mutation to generate a new
random number or by local search executed to optimize the constants in an expression. Constants
that should not be modified (such as pi) can also be specified.

FitnessA metric describing the error in an Individuals’ calculation of the energy using the train-
ing data.

Population/DemeA population or deme is a group of individuals that evolve together. Crossover
occurs using multiple individuals from a population and selection occurs based on the individuals
in a single population. Multiple populations can be used in a run. The populations evolve sepa-
rately, but can interact through migration of individuals between the populations.

Island Here, an island is used in parallel runs to describe the population or set of populations
undergoing evolution in a single MPI process.

Vi v arium All of the populations involed in a run.

Hall of FameThe Hall of Fame contains then individuals with the best fitness(es) found during a
run.

Milestone/Restart FileThese files contain the output of all of the individuals at some point in the
optimization and have the extension .obm

Hybrid Optimization/Local Search Hybrid optimization occurs separately from the evolution-
ary optimization. With a specified probability, local search is performed on an individual to opti-
mize 1 or multiple constants.

PARAMETERS
-c Restart from existing milestone files. When restarting, the functional form (-t), the beagle_con-

fig_filefile, and theinput_datacan be different from those used in the original run. This allows the
user to change parameters and/or add data to refine runs. If the-f flag was used to specify a non-
default file header for the restart files. The-f flag should also be specified again with the same
name when using-r . When running in parallel, the same number of processes should be used for
the restart. If a smaller number is used, the extra individuals will be ignored. If a larger number is
used, an error is generated. When restarting an optimization, the generation number starts at the
last generation in the milestone file. Therefore, the maxgens termination criterion may need to be
increased. The restart files are read by the ReadRestartOp in thebeagle_config_file

-f file_header

Specify the header for the .log output file and the .obm milestone files. The default is gp_force.

-g start_size end_size

Scale the fitness by the number of nodes in the tree. This can be used to reduce the average size of
individuals. A tree withstart_sizeor smaller nodes has a maximum fitness of 1.0. A tree with
end_sizeor greater nodes has a maximum fitness of 0.0.

pm_dreamer (PM-Dreamer Utilities) 0.2 March 30, 2010 2

pm_dreamer(1) PM-Dreamer Utilities pm_dreamer(1)

-h Print out the man page for help

-n notice_level

Set the degree of program output. Use:

-n 0 No output
-n 10 Normalprogram output
-n 20 Parameters useful for reproducing the results
-n 30 All output. The degree of Open Beagle Output changes at 10,20, and 30.

-p hfc_copy_num

Sets the ec.hfc.copy_num register as described below for HFC from the commandline.
ec.mig.mpi_split is set to the same value to allow use with the MPI migration operator.

-r rseed

Specify the random seed (unsigned long). Default is 1.

-s stat_type

Choose the fitness statistic used. Options are RMSD for adaptive RMSD, CORR for the Pearson
correlation coefficient, and OLS for ordinary least squares fitting. See the Fitness section for
details on each method.

-t energy_type

Specify the functional form of the energy function

-z Disable vectorized tree evaluation. This will typically be at least 4x slower for the optimized Bea-
gle library and greater than 15x slower for the unoptimzed library.

BEAGLE CONFIGURATION FILE
The Beagle configuration file is used to control the optimization including the functions, terminals, opera-
tors, and replacement strategies that are used. Deatils on each section follow. A template for a configuration
files is:

<?xml version="1.0" encoding="ISO-8859-1"?>
<Beagle>
<Evolver>
<BootStrapSet>

... Population Initialization...

</BootStrapSet>
<MainLoopSet>

... Replacement Strategy...

... Fitness Evaluation...

... Crossover...

pm_dreamer (PM-Dreamer Utilities) 0.2 March 30, 2010 3

pm_dreamer(1) PM-Dreamer Utilities pm_dreamer(1)

... Selection...

... Fitness Evaluation...

... Mutation...

... Selection...

... Selection...

... Migration ...

... Statistics...

... Termination Criteria...

... Restart File Output...

</MainLoopSet>
</Evolver>
<System>
<PrimitiveSuperSet>
<PrimitiveSet>

... Functions...

... Terminals...

</PrimitiveSet>
</PrimitiveSuperSet>
<Register>

... Register values...

</Register>
</System>

</Beagle>

POPULATION INITIALIZATION
The initialization is accomplished using the following operators:
GP-InitHalfOp

Koza’s ramped half-and-half generative method. An equal number of expression trees are gener-
ated using a depth parameter that ranges between 2 and the maximum specified depth

GP-InitFullOp

The initial population will consist of expression trees that all have a depth equal to the maximum
depth.

GP-InitGr owOp

pm_dreamer (PM-Dreamer Utilities) 0.2 March 30, 2010 4

pm_dreamer(1) PM-Dreamer Utilities pm_dreamer(1)

The initial population consists of expression trees of variable depths.

RestartReadOp

Read in population from a restart (milestone) file. This operator replaces the MilestoneReadOp
operator in Open Beagle to allow the parameters in thebeagle_config_fileto override those in the
milestone file. The example below checks to see if the register, ms.restart.file, is set. If it is, a
restart file is read in. Otherwise, a population is generated using half-and-half followed by fitness
evaluation and statistics output:

<BootStrapSet>
<IfThenElseOp parameter="ms.restart.file" value="">
<PositiveOpSet>
<GP-InitHalfOp/>
<EnergyOp/>
<GP-StatsCalcFitnessSimpleOp/>

</PositiveOpSet>
<NegativeOpSet>
<RestartReadOp/>

</NegativeOpSet>
</IfThenElseOp>

</BootStrapSet>

REPLACEMENT STRATEGY AND MIGRATION
The replacement strategy is specified using the follow operators:
DecimateOp

Shrink the population size by keeping the n best individuals

GenerationalOp

Breeding tree following a generation by generation replacement strategy

HierarchicalFairCompetitionOp

HCF operator inspired by the work of Hu and Goodman

MigrationRandomRingOp

Migrate randomly chosen individuals between populations using a ring topology

MuCommaLambdaOp

A (Mu,Lambda) operator generates Lambda children individuals from a population of Mu par-
ents(where Lambda > Mu). From these Lambda individual, it keeps the Mu best to constitute the
new generation.

MuPlusLambdaOp

A (Mu+Lambda) operator generates Lambda children individuals from a population of Mu par-
ents (usually where Lambda > Mu). From the Mu parents and the Lambda individual, it keeps the
Mu best individuals to constitute the new generation.

pm_dreamer (PM-Dreamer Utilities) 0.2 March 30, 2010 5

pm_dreamer(1) PM-Dreamer Utilities pm_dreamer(1)

NSGA2Op

The NSGA2 replacement strategy implement the elitist multiobjective evolutionary algorithm
NSGA2 (Non-dominating Sorting Genetic Algorithm)

OversizeOp

An oversize operator generates (ratio * population size) children individuals from a population of
Mu parents.

SteadyStateOp

Steady state replacement strategy operator

CROSSOVER AND MUTATION
Crossover and mutation are specified using the follow operators:
GP-CrossoverOp

Crossover of two individuals to produce a new individual

GP-MutationEphemeralDoubleOp

Mutate the value of a randomly chosen double precision constant in the tree

GP-MutationShrinkOp

Replace a randomly chosen branch with a randomly chosen argument on the branch

GP-MutationStandardOp

Canonical GP Mutation

GP-MutationSwapOp

Swap nodes in the expression tree

GP-MutationSwapSubtreeOp

Swap branches in the expression tree

SELECTION
Selection is specified using the follow operators:
NPGA20p

Multiobjective evolutionary algorithm NPGA 2 (Niched Pareto Genetic Algorithm)

SelectParsimonyTournOp

pm_dreamer (PM-Dreamer Utilities) 0.2 March 30, 2010 6

pm_dreamer(1) PM-Dreamer Utilities pm_dreamer(1)

A simple lexicographic parsimony pressure tournament selection operator, based an idea pre-
sented in: Luke, S., and L. Panait. 2002. Lexicographic Parsimony Pressure.

SelectRandomOp

Select an individual in a population randomly operator class (uniform distribution).

SelectRouletteOp

Proportionnal roulette selection operator class.

SelectTournamentOp

Tournament selection operator class.

TERMIN ATION
Optimization is terminated using the following operators:

TermMaxGenOp

Maximum generation termination criterion operator.

TermMaxFitnessOp

Maximum fitness value termination criterion operator class.

TermMaxHitsOp

Number of hits required in an individual in order for the evolution process to terminate.

TermMaxEvalsOp

Maximum number of fitness evaluations termination criterion operator.

RESTART FILES AND POPULATION OUTPUT
Files output containing populations that can also be used for continuing a simulation are generated with the
following operators. (See also POPULATION INITIALIZATION.)

MilestoneWriteOp

Write out a milestone file

ParetoFrontCalculateOp

Evaluate Pareto front from demes and vivarium and put it in place of the actual hall-of-fame. The
Pareto front is evaluated just before milestones are written. If previous hall-of-fame are presents in
the demes/vivarium, they are erased. This operator must be in the evolver’s operator sets between
the termination criterion check operators and the MilestoneWriteOp operator.

pm_dreamer (PM-Dreamer Utilities) 0.2 March 30, 2010 7

pm_dreamer(1) PM-Dreamer Utilities pm_dreamer(1)

STATISTICS
Statistics on fitness, function and terminal usage, and expression tree size are generated using the follow
operators:

GP-StatsCalcFitnessSimpleOp, GP-StatsCalcFitnessKozaOp, GP-PrimitiveUsageStatsOp, GP-Individual-
SizeFrequencyStatsOp

ADF and Constrained Operators
Automatically Defined Functions (ADF) and constrained operators are also available:

GP-ModuleCompressOp, GP-ModuleExpandOp, GP-CrossoverConstrainedOp, GP-InitHalfConstraine-
dOp, GP-InitFullConstrainedOp, GP-InitGrowConstrainedOp, GP-MutationShrinkConstrainedOp, GP-
MutationStandardConstrainedOp, GP-MutationSwapConstrainedOp, GP-MutationSwapSubtreeConstraine-
dOp.

The additional primitives for the ADF operators include:

ADF (Automatically Defined Function) and ARG (Generic Argument for ADF)

FUNCTIONS
The following functions can be utilized as primitives in the expression

Abs,Add,Cos,Divide,Exp,Log,Multiply,Sin,Subtract

Additional functions added by PM-Dreamer are described below. Functions are added by listing the func-
tion name and bias in the primitive set. For example:

<Primitive name="ADD" bias="1"/>

TERMINALS
The terminals are primitives in the expression tree that do not take arguments (e.g. constants in the expres-
sion or variables of the expression. Some that can be included are a double precision number [-1, 1] (E), PI
(Pi), and/or a variable, (X), for the potential:

<Primitive name="E" bias="1"/>
<Primitive name="Pi" bias="1"/>
<Primitive name="X" bias="1"/>

ADDITIONAL PRIMITIVES
The additional function and terminal primitives hav ebeen added:

E_i

Double precision integer [-20,20]. Generation or mutation of E_i results in an integer, howev er,
hybrid optimization can produce non-integer numbers.

pm_dreamer (PM-Dreamer Utilities) 0.2 March 30, 2010 8

pm_dreamer(1) PM-Dreamer Utilities pm_dreamer(1)

E_d

Double precision number [-20,20].

Po w

Exponentiation.

REGISTERS
The registers allow for parameterization of the operators and optimization (e.g. mutation frequency, number
of generations, etc.). The registers can be set by specifying the register and the value in the configuration
file:

<Entry key="ec.pop.size">500/500/500/500</Entry>
<Entry key="ec.term.maxgen">100</Entry>

A l ist of registers and short descriptions is given below. If the value type of a register begins with U, the
type is unsigned. If the value type is an array, individual elements are delimeted using a /.

ec.conf.dump <String> (def: "")

Filename used to dump the configuration. A configuration dump means that a configuration file is
written with the evolver (including the composing operators) and the register (including the regis-
tered parameters and their default values). No evolution is conducted on a configuration dump. An
empty string means no dump.

ec.elite.keepsize<UInt> (def: 1)

Number of individuals keep as is with strong n-elitism.

ec.hof.demesize<UInt> (def: 0)

Number of individuals kept in each deme’s hall-of-fame (best individuals so far). Note that a hall-
of-fame contains only copies of the best individuals so far and is not used by the evolution process.

ec.hof.vivasize <UInt> (def: 1)

Number of individuals kept in vivarium’s hall-of-fame (best individuals so far). Note that a hall-
of-fame contains only copies of the best individuals so far and is not used by the evolution process.

ec.init.seedsfile <String> (def: "")

Name of file to use for seeding the evolution with crafted individual. An empty string means no
seeding.

ec.mig.interval <UInt> (def: 1)

Interval between each migration, in number of generations. An interval of 0 disables migration.

ec.mig.size <UInt> (def: 5)

pm_dreamer (PM-Dreamer Utilities) 0.2 March 30, 2010 9

pm_dreamer(1) PM-Dreamer Utilities pm_dreamer(1)

Number of individuals migrating between each deme, at a each migration.

ec.pop.size <UIntArray> (def: 100)

Number of demes and size of each deme of the population. The format of an UIntArray is
S1,S2,...,Sn, where Si is the ith value. The size of the UIntArray is the number of demes present in
the vivarium, while each value of the vector is the size of the corresponding deme.

ec.repro.prob <Float> (def: 0.1)

Probability that an individual is reproducted as is, without modification. This parameter is useful
only in selection and initialization operators that are composing a breeder tree.

ec.sel.tournsize <UInt> (def: 2)

Number of participants for tournament selection.

ec.term.maxfitness <Float> (def: 1)

Fitness value to reach before stopping evolution.

ec.term.maxgen<UInt> (def: 50)

Maximum number of generations for the evolution.

gp.cx.distrpb <Float> (def: 0.9)

Probability that a crossover point is a branch (node with sub-trees). Value of 1.0 means that all
crossover points are branches, and value of 0.0 means that all crossover points are leaves.

gp.cx.indpb <Float> (def: 0.9)

Individual crossover probability at each generation.

gp.init.maxargs <UIntArray> (def: 0/2)

Maximum number of arguments in GP tree. Tree arguments are is usually useful with ADFs (and
similar stuff).

gp.init.maxdepth <UInt> (def: 5)

Maximum depth for newly initialized trees.

gp.init.maxtree <UInt> (def: 1)

Maximum number of GP tree in newly initialized individuals. More than one

FITNESS EVALUATION
The fitness evaluation in PM-Dreamer can be calculated using several different fitness statistics specified
with the-s flag. The fitness in each case is given by F:

F =
1

1 + c × s(e,p)

pm_dreamer (PM-Dreamer Utilities) 0.2 March 30, 2010 10

pm_dreamer(1) PM-Dreamer Utilities pm_dreamer(1)

wheree represents the energies and/or forces from the training set normalized by the number of distances
used in the calculation of each energy/force andp represents those normalized values as calculated by a
candidate individual. For the adaptive RMSD, c=1 ands(e,p) is the normalized root mean squared error
betweene andp. For the Pearson correlation coefficient, c=100 ands is given by the absolute value of the
correlation coefficient betweene and p. For OLS, ordinary least squares is performed to give the linear
rescaling ofp that results in the lowest RMSD withe. For 3-body potentials, the least squares problem is
solved to optimize the linear combination of the 2 and 3 body functions that optimize the fit. In this case,s
is this RMSD andc is 1. When using the Pearson correlation or OLS, the functions must be post-processed
to minimize the RMSD by solving analytically for new constants in the expression tree. This can be accom-
plished usingOLSCorrectOp or DreamerOp as described below. The calculation ofp according to the
candidate expression is performed using one of several templates specified with the-t option. For all, the
fitness calculation in thebeagle_config_filefile is specified usingEnergyOp.

PAIR POTENTIALS (-t pair)

The pair potential,pair , is the default functional form used for fitness calculation. It is calculated as:

p =
1

n

n

i=1
Σ g (Xi)

whereX_i is a single variable describing the particle pair (e.g. the inter-particle distance) andg is the func-
tion optimized using genetic programming. The fitness of the function is evaluated using a set of sample
configurations for which the energies have been calculated. For example input file formats, seepair and
efxyzbelow. In order to use this template, the X variable should be added to the primitive set:

<Primitive name="X" bias="1"/>

PAIR POTENTIALS WITH FORCE (-t paird)

The pair potential with force,paird , is similar to pair with the exception that a particle force is supplied for
a particle in each configuration allowing the potential function to be fit to both the energy and the force.
When this style is used the fitness is one half the fitness statistic calculated for the energies plus one half the
fitness statistic calculated for the forces.

When OLS is used as a fitness statistic, the least squares optimization is performed using only the energies -
the force calculation is performed using the resulting formula. The Pearson correlation is calculated sepa-
rately for the energies and forces - therefore it might not be possible to ’correct’ the equations with a single
set of optimized coefficients.

Here, the potential is calculated as described for thepair style, and the force is calculated as the negative
gradient of the energy for a particle using forward finite-difference. This style requires an input format that
supports forces; for an example, see efxyz below. The equations that result from the optimization will be in
terms of the independent variableX which represents the interparticle distance for a pair as calculated from
the supplied positions. Therefore,X should be added to the primitive set as described forpair .

PAIR POTENTIAL USING ONL Y THE FORCE (-t pairf)

This template is similar topaird with the difference that only the forces are used in fitness evaluation. This
style can therefore allow for much faster optimization followed by refinement by switching to stylepaird .
Any energies specified in the input file are ignored.

PAIR POTENTIAL USING ONL Y THE X-FORCE (-t pairf1)

pm_dreamer (PM-Dreamer Utilities) 0.2 March 30, 2010 11

pm_dreamer(1) PM-Dreamer Utilities pm_dreamer(1)

This template is similar topairf except that only the x component of the force is utilized for fitness evalua-
tion.

TWO/THREE BOD Y POTENTIALS (-t twothree)

This template evaluates two summations for the potential energy and can be used to fit potentials that
include a 2-body term and a 3-body term. The form for the expression is:

p =
1

n

n

i
Σ g (Xi) +

1

n

m

i
Σ h (R1i, R2i , Ai)

The sample data therefore consists of a set variablesX_1,...,X_n that are evaluated in the first summation
and a second setR1_1,...,R1_m, R2_1,...,R2_m, and A_1,...,A_m that are evaluated in the second summa-
tion, wheren is not necessarily equal tom. For a 2/3-body potential,X might represent the interparticle dis-
tances in the 2-body part of the potential. For the 3-body part,R1andR2might represent the distances from
particle 1 to particles 2 and 3 andA might represent the angle cosine between the corresponding vectors.
Example input data file formats for this style includetwothreeandefxyz(below). In order to use this style,
the variables X, R1, R2, and A must be added to the primitive set:

<Primitive name="X" bias="1"/>
<Primitive name="R1" bias="1"/>
<Primitive name="R2" bias="1"/>
<Primitive name="A" bias="1"/>

The equations forg andh are stored in the same expression tree whereg is the left subtree of the root node
andh is the right subtree of the root node. For this template, the root node is meaningless.

TWO/THREE BOD Y POTENTIALS WITH FORCE (-t twothreed)

This template evaluates thetwothree potential style, but also evaluates the force for a single particle in each
configuration in the fitness function. This is done in an identical manner to thepaird potential style. Using
the cutoff and particle positions, the vectorX is calculated to contain all particle pairwise distances smaller
than the cutoff. Likewise, for all particle triplets, the vectorsR1, R2 andA are calculated to contain the dis-
tances between the center atom and the other two atoms and the angle cosine between the corresponding
vectors if the two distances are both smaller than the cutoff. As with the other twothree styles, the variables
X, R1, R2, and A should be added to the primitive set.

As with paird, when OLS is used as a fitness statistic, the least squares optimization is performed using
only the energies - the force calculation is performed using the resulting formula. The Pearson correlation is
calculated separately for the energies and forces - therefore it might not be possible to ’correct’ the equa-
tions with a single set of optimized coefficients.

TWO/THREE BOD Y POTENTIALS USING ONL Y FORCE (-t twothreef)

This template is similar totwothreed with the exception that only the force is used in the fitness evaluation.
This allows for potentially faster optimizations and can be used to seed further runs that use thetwothreed
style. Any energies in the input data files are ignored.

DATA FILE TYPES
Several data file types are supported for specifying the energies and/or forces along with configuration data:

EFXYZ Data File Type

pm_dreamer (PM-Dreamer Utilities) 0.2 March 30, 2010 12

pm_dreamer(1) PM-Dreamer Utilities pm_dreamer(1)

This data type supports configuration data in the form of atom positions with an option for periodic bound-
ary conditions and a cutoff. Exactly 1 energy and 1 particle force are supplied per configuration. Zero(s)
can be used in place of the energy or force if unknown and not used in the optimization (see fitness evalua-
tion above). The file type supports only 1 particle type. The format for the input data file is:

Comments for the input file

filetype efxyz
cutoff C
periodicp_x p_y p_z

e fi fx fy fz x1 y1 z1 x2 y2 z2 ...

...

First a cutoff is specified such that particle pairs with a distance greater thanC contribute zero to the force
and energy calculation. IfC is negative, the cutoff is infinity. If the periodic keyword is present, periodic
boundary conditions are used with box dimensions equal top_x, p_y andp_z. Each of the following lines
begins with an energy e followed by an index to a particle for which the force is computed,f_i. The first
particle index is 1. This is followed by the Cartesian components of the force. Finally the Cartesian coordi-
nates for each particle in the system are given.

EFIXYZ Data File Type

This file is similar to the efxyz format except that multiple particle types can be specified:

Comments for the input file

filetype efixyz
cutoff C
periodicp_x p_y p_z

typesN
e fi fx fy fz i1 x1 y1 z1 i2 x2 y2 z2 ...

...

whereN is the number of particle types andi is the type for each particle. The valid range for particle types
is [1..N]. See the multiple particle types section for more information on performing these types of opti-
mizations.

PAIR Data File Type

The pair file type supports configuration input in terms of an energy and a single variable, X, that the poten-
tial is summed over to calculate an energy (e.g. X can be the interatomic distance used to compute the
energy). The file type only supports 1 particle type for configurations and only 2-body potentials. Addition-
ally, fitness evaluation is limited to templates that do not use particle forces. The format for the input file is:

Comments for the input file

filetype pair

e X1 X2 ...

pm_dreamer (PM-Dreamer Utilities) 0.2 March 30, 2010 13

pm_dreamer(1) PM-Dreamer Utilities pm_dreamer(1)

e X1 X2 ...

...

Each line begins with an energy e and is followed by a variable number of data points for each pair in the
configuration. Empty lines and lines beginning with # are ignored.

TWOTHREE Data File Type

This file type is used for potentials that perform a summation of some function over all pairs and a separate
summation over all triplets. The template allows for a single variable, X, in the two-body equation (e.g.
interatomic distance), and 3 variables (R1, R2, and A) for the 3-body equation (e.g. interatomic distances
and triplet angle). The file type only supports 1 particle type and can only be used with 3-body fitness eval-
uation. Additionally, fitness evaluation is limited to templates that do not use particle force. The format for
the input data file is:

Comments for the input file

filetype twothree

eTWO X1 ... Xn THREE R11 R21 A1 ... R1m R2m Am

...

wheree is the energy of the configuration.

PARALLEL PM-DREAMER
PM-Dreamer can be run in parallel using an island model. In serial, PM-Dreamer uses the Open Beagle
model allowing for multiple populations with individual movement according to migration operators. In
parallel PM-Dreamer allows for multiple islands, 1 per process, to be run. Each island can contain multiple
populations with migration controlled by the standard operators. Migration between the islands is con-
trolled by additional operators which are described below. The output for each island is written separately
to the files gp_force_0.log, gp_force_1.log, ... and gp_force_0.obm(.gz), gp_force_1.obm(.gz), ... It should
be noted that in the current implementation, random seeds only produce the same output when run on the
same number of processors. When running in parallel, the MPITerminateOp should be used to to assure
proper termination of all processes in a run. The additional operators available for parallel execution are:

MigrationMPIOp

Each timeec.mig.mpi_intervalgenerations passes,ec.mig.mpi_sizeindividuals from each popula-
tion on an island migrate to a randomly chosen island and are replaced with immigrants from a
second randomly chosen island. The random islands are chosen such that all islands will partici-
pate in migration at each iteration. The operator does not perform migration between populations
on the same island. This can be achieved using standard migration operators in addition to Migra-
tionMPIOp

HFCompMPIOp

This implements a distributed parallel algorithm for the Hierarchical Fair Competition inspired by
the work of Hu and Goodman. (Similar to the serial HierarchicalFairCompetitionOp). This opera-
tor should not be used with the serial HierarchicalFairCompetitionOp operator. In this algorithm, a
fitness threshold is chosen such that any individuals from a population with index i will migrate to
the populationi+1 if their fitness is better than the fitness threshold for that populationi+1. If any

pm_dreamer (PM-Dreamer Utilities) 0.2 March 30, 2010 14

pm_dreamer(1) PM-Dreamer Utilities pm_dreamer(1)

populations has excess individuals following migration, the least fit individuals are killed off. Ran-
dom individuals are added to account for any shortages. This promotes a hierarchy of populations
where the fitness of the best individuals improves with the population index. The migration occurs
through all populations on a single island followed by migration of individuals of the last popula-
tion of one island to the first population of another. In order to achieve parallel efficiency, their is a
1-step lag from the time individuals migrate out of an island to the time they arrive at the next. The
fitness thresholds for the populations can be set in 2 ways. In the default, ec.hfc.first is set to -1
and the fitness threshold for a population is set to a value where the threshold is greater than
ec.hfc.percentile of the population. For example, if ec.hfc.percentile is 0.85 the fitness threshold
for a population is set to the value of the individual whose fitness is worse than only 15% of the
population. In the case, the fitness thresholds are adaptive. In the second approach, the fitness
thresholds are fixed. ec.hfc.first (float greater than 0 and less than 1) is set to the fitness threshold
of the first population accepting incoming individuals. The thresholds for the subsequent popula-
tions are increased according to ec.hfc.scale (described below)to allow for thresholds up to but less
than 1.0

GP-StatsCalcFitSimpleMPIOp

This operator can replace GP-StatsCalcFitnessSimpleOp to replace Vivarium statistics for a single
island with Vivarium statistics for all processes in the log file on process 0. The best hall-of-fame
individual from all processes is also stored in the milestone file for process 0. When using this
operator, analysis of the log file generated on process 0 should be all that is necessary under most
circumstances. This operator will also output fitness information and a "pretty" representation of
the best individual at each generation to stdout.

MPITerminateOp

This signals the application to terminate execution of all processes whenever a single island is ter-
minated by any of the termination operators. This operator also delays termination until all demes
are evaluated for a given generation. This allows proper communication of statistics and end-of-
run operations such as simplification and OLS correction to occur In order to work properly, the
operator should be placed following any other termination operators.

TermMaxTimeOp

Terminate after ec.term.maxtime minutes have passed. If compiled with MPI, this is the MPI wall
time. Otherwise, this is the time calculated using c_time clock(). If set to zero, the operator is
ignored. This operator will also log the time at each generation to stdout

The registers available for parallel execution are:

ec.mig.mpi_interval

The number of generations that must pass before a migration between islands occurs.

ec.mig.mpi_size

The number of individuals that migrate from each population of each island.

ec.term.maxtime

Terminate the evolution after this many minutes (default 60).

ec.hfc.percentile

pm_dreamer (PM-Dreamer Utilities) 0.2 March 30, 2010 15

pm_dreamer(1) PM-Dreamer Utilities pm_dreamer(1)

Percentile of fitness measure to use as HFC migration threshold of next population. For example,
a threshold of 0.85 means that the fitness used as threshold to accept migrant into following popu-
lation is taken as the fitness of the individual that is better than 85% of the other individuals in its
population. Default is 0.85. This value is ignored if ec.hfc.first is positive

ec.hfc.first

If negative, adaptive thresholds are used for HFC according to ec.hfc.percentile. If positive, the
register must be greater than 0 and less than 1.0. The thresholds for the populations in HFC are
then set evenly spaced fixed values betweenfirst and 1.0.

ec.hfc.scale

This parameter is used to adjust how the fitness thresholds of populations are scaled if adaptive
thresholds are not used (ec.hfc.first>0). The ratio between the fitness thresholds of populations is
given by ec.hfc.scale to create a geometric series between ec.hfc.first and 1.0. If ec.hfc.scale is 1,
the fitness thresholds are evenly spaced. If ec.hfc.scales is >1, more of the fitness thresholds are at
lower fitnesses. If <1, more are at higher fitnesses. The default value is 1.

ec.hfc.interval

Interval between each hierarchical fair competition migration, in number of generations. An inter-
val of 0 disables HFC migrations. Default is 1.

ec.hfc.copy_num

This flag controls the number of islands that have the same fitness thresholds. For example, a 4
processor job can have fitness thresholds of {0, 0.25, 0.5, 0.75} when copy_num is 1 or fitness
thresholds of {0, 0, 0.5, 0.5} when copy_num is 2. For the latter case, an individual on island 0 or
1 who exceeds the fitness threshold of 0.5 will migrate to either population 3 or 4 randomly. When
copy number is greater than 1, migration between islands with the same fitness threshold can be
allowed with the use of MigrationMPIOp and a ec.mig.mpi_split register value equal to
copy_num. This register can also be set from the command line. Default is 1.

ec.mig.mpi_split

When this register is greater than 1, the islands are split into groups of size ec.mig.mpi_split. Each
group contains a sequential ordering of islands according to process rank. Migration according to
the MigrationMPIOp will then only occur within a group. This can be used with HFCCompM-
PIOp to restrict migration only between populations with the same fitness threshold. Default is 0

HYBRID PM-DREAMER
PM-Dreamer supports hybrid optimization of functional forms, allowing for local optimization of constants
in the expression tree. This is accomplished by adding theGP-HybridOptOp operator. The registers that
parameterize the operator include:

gp.hybopt.indpb

The frequency with which hybrid optimization is performed on an indivual. The default value is
0.05.

gp.hybopt.primit

pm_dreamer (PM-Dreamer Utilities) 0.2 March 30, 2010 16

pm_dreamer(1) PM-Dreamer Utilities pm_dreamer(1)

The name for the constants in the tree that are optimized. Default is E.

gp.hybopt.type

The type of optimization to be performed. If the value is 0, all constants in an expression tree are
optimized using multidimensional Nelder/Mead Simplex algorithm. If the value is nonzero, a ran-
dom constant in the expression tree is optimized using 1D minimization (also with Simplex). The
default value is 1.

gp.hybopt.maxi

The maximum number of iterations of local optimization to be performed. Default is 10.

gp.hybopt.simplify

If nonzero, function simplification is performed before each optimization. See SimplifyOp.
Default is 0.

gp.hybopt.mtypes

If nonzero, optimization is also performed on the E_p and E_t constants used for multiple particle
types. See MULTIPLE PARTICLE TYPES section below for more details. Default is 1.

Please see Function Simplification for additional registers that control simplification during hybrid opti-
mization.

An analytic optimization is also available that utilizes least squares for function optimization. For a 2-body
potential functionf the function is modified to give f ’=af+b wherea andb are optimized to result in the
lowest RMSD. For a 3-body potentialf+g, four constants are optimized to give af+b+cg+d. This is accom-
plished with theGP-OLSCorrectOp operator. Because this operator increases the function size at each
operation, it is recommended that it only be performed once (e.g. at the end of a run).DreamerOp
described below is one way to accomplish this. The registers forGP-OLSCorrectOp are:

gp.olscorrect.name

The name of the primitives added that store constant values. Default is E.

gp.olscorrect.indpb

The probability of operation on an individual. Default is 1.0

gp.olscorrect.interval

The interval in generations between operations. Default is 20

FUNCTION SIMPLIFICATION
PM-Dreamer supports function simplification to reduce tree size. This is accomplished by evaluating each
non-terminal node of the tree for the set of input values. If the range of answers for the set of evaluations is
smaller than a specified threshold, the subtree is replaced with a constant value. Likewise, if a subtree eval-
uates to be identical to an input variable, it is replaced with that variable. This is accomplished by adding
theGP-SimplifyOp operator. The registers that parameterize the operator include:

pm_dreamer (PM-Dreamer Utilities) 0.2 March 30, 2010 17

pm_dreamer(1) PM-Dreamer Utilities pm_dreamer(1)

gp.simplify.indpb

The frequency with which simplification is performed on an indivual. The default value is 1.0.

gp.simplify.name

The name of the ephemeral for constants used to replace subtrees. Default is E.

gp.simplify.eps

The threshold for determining invariance. The default is 1e-20.

gp.simplify.maxe

The maximum number of evaluations used to determine invariance. The evaluations are per-
formed using the same input data that is used for fitness evaluation. If 0, all input data are used.
Otherwise, the first maxe function evaluations are performed. The default is 0.

gp.simplify.interval

Interval in generations between each simplification operation. An interval of 0 disables simplifica-
tion. Default is 20.

You can also perform simplification on an individual before hybrid optimization. In this case, the <GP-Sim-
plifyOp> operator does not need to be specified explicitly in the configuration file. However the registers
that control simplification should still be specified (aside from gp.simplify.indpb which is not used).

DREAMER OPERATOR
The Dreamer operatorDreamerOp is utilized to perform post-processing of the best individual from a run.
Additionally, the operator includes the functions ofMPITerminateOp and GP-StatsCalcFitSimpleM-
PIOp. At the end of a run the best individual is simplified (GP-SimplifyOp) and optimized (GP-Hybri-
dOptOp) using the user-specified fitness statistic. OLS optimization is then performed (GP-OLSCorrec-
tOp). This is followed by a second round of simplification and optimization using AdaptiveRMSD as the
fitness statistic. For parallel runs, the best individual from all processes is moved to the hall-of-fame on pro-
cess 0. The user-specified fitness, functional form, and RMSD for the energies and/or forces is reported. As
with GP-StatsCalcFitSimpleMPIOp, this function will add monitoring of the fitness and functional form
of the best individual during the run. Because the operator incorporatesMPITerminateOp , it should be
placed following any other termination operators. The following registers (described above) can be speci-
fied when usingDreamerOp: gp.simplify.name, gp.simplify.eps, gp.simplify.maxe, gp.olscorrect.name,
gp.hybopt.primit. gp.hybopt.type is set to 0 and gp.hybopt.maxi is set to 100 when performing optimiza-
tion within DreamerOp. GP-StatsCalcFitSimpleMPIOp andMPITerminateOp do not need to be speci-
fied in the input parameter file when usingDreamerOp. GP-HybridOptOp andGP-SimplifyOp should
be specified if you wish to perform these operations during the run.

RESTARTING OPTIMIZATIONS
Simulations can be restart using the-c flag. This requires that the ReadRestartOp operator be present in the
beagle_config_file. The ReadRestartOp replaces the MilestoneReadOp in OpenBeagle. When restarting, the
individuals and the generation number are read. The data, template_style, and parameters from the previous
run are not read in. This allows the user to continue a run with new data, template_style, and/or configura-
tion parameters. When restarting a run with new data or a new template_style, the fitness of all individuals

pm_dreamer (PM-Dreamer Utilities) 0.2 March 30, 2010 18

pm_dreamer(1) PM-Dreamer Utilities pm_dreamer(1)

are recalculated and the Hall of Fame individuals are updated with any changes that result from the new fit-
ness evaluation. Because the restart will start using the last generation from the milestone files, the
ec.term.maxgen register may need to be increased to allow for a larger number of generations. When
restarting in parallel, if a smaller number of processors is used, the individuals from the higher rank pro-
cesses will be thrown out.

VECTORIZATION
PM-Dreamer allows for vectorized evaluation of expression trees (which is now the default). Vectorization
can be disabled by using the-z flag. When vectorization is enabled, the expression tree for a given individ-
ual needs to be parsed only a single time using the vector(s) of values necessary for energy/force calcula-
tion. This provides an improvement in speed because it prevents multiple parsing of the same expression
tree and the potential for SIMD compiler optimizations. The configuration file does not need to be changed
to utilize vectorization; internal replacements of the standard primitives and fitness operators are performed
to allow vector math operations to be performed. Although the runs with vectorization should produce iden-
tical results, changes due to finite precision and the order of summation operations can result in different
results. Because certain Open Beagle primitives hav ethe argument types hard-coded, vectorization is left as
an option to aid in compatability with future versions.

MUTIPLE PARTICLE TYPES
PM-Dreamer allows for optimization using multiple particle types as specified with theefixyz file format.
Output is given to standard out at the beginning of a simulation with the number of interactions for each
combination of particle types (for example):

Pair_Particle_Type Count

1-1 77
2-1 154
2-2 69

3body_Particle_Type Count (Center First)
--
1-1-1 33
1-2-1 88
1-2-2 33
2-1-1 44
2-2-1 66
2-2-2 36

Optimization using multiple particle types requires the addition of special primitives in order to be effec-
tive. For 2-body potentials, E_p can be added to optimize constants for each particle type interaction:

<Primitive name="E_p" bias="1"/>

The primitive E_p will be described in any equation as a vector of constants in the same order as the type
counts written at the beginning of the optimization. For 3-body combinations, the primitive E_t can also be
added:

<Primitive name="E_t" bias="1"/>

In equations written to standard out, each occurance of an E_p or E_t primitive is replaced with a lower
case variable (starting with the letter a). The vector corresponding to each variable is written on the follow-
ing lines (for example):

pm_dreamer (PM-Dreamer Utilities) 0.2 March 30, 2010 19

pm_dreamer(1) PM-Dreamer Utilities pm_dreamer(1)

2-Body: (a*X)/1.7441+b
a=[-4.0801 -14.4792 -16.8834]
b=[-8.4213 -21.0239 253.8123]

3-Body: exp(R1)*(2.3695/c)
c=[-3.2828 11.8393 17.4884 -15.1295 9.2678 19.6123]

Therefore it is recommended to use only upper case names for any other primitives when using multiple
particle types. The 2- and 3- body contant vectors have their own mutation operators and registers. The
operators for 2- and 3- body (respectively):

<GP-MutationEphemeral2COp/>
<GP-MutationEphemeral3COp>

and the registers are:

<Entry key="gp.mute2c.indpb">0.05</Entry>
<Entry key="gp.mute2c.primit">E_p</Entry>
<Entry key="gp.mute3c.indpb">0.05</Entry>
<Entry key="gp.mute3c.primit">E_t</Entry>

If hybrid local search is used during the optimization and gp.hybopt.mtypes is non-zero (default), local
optimization of contant vectors will automatically be performed in addition to the primitive specified by the
gp.hybopt.primit register. If gp.hybopt.type register is 0 all constants in the vectors will be optimized. If it is
1 all of the contants in 1 chosen vector might be optimized. Optimization of multiple particle types is cur-
rently limited to vectorized simulations.The register gp.simplify.maxe is ignored when multiple particle
types are used; in this case, the entire dataset is used to determine invariance.

LIMIT ATIONS
Fitness metrics in PM-Dreamer are limited to those that generate floating points >=0 and <=1 with 1 repre-
senting a perfect match to machine precision. For certain functions, the input variables are only checked
during initialization and therefore cannot change in the middle of a run. The following epsilon values are
currently hard coded in PM-Dreamer:

1e-8

Epsilon for forward finite difference.

1e-8 and 1e16

Are the minimum and maximum ranges for test data evaluated using a correlation coefficient or
OLS.

The primitive names E_p and E_t should only be used in optimizations involving multiple particle types as
described above. The register gp.simplify.maxe is ignored when multiple particle types are used; in this
case, the entire dataset is used to determine invariance.

pm_dreamer (PM-Dreamer Utilities) 0.2 March 30, 2010 20

pm_dreamer(1) PM-Dreamer Utilities pm_dreamer(1)

AUTHORS
W. Michael Brown

pm_dreamer (PM-Dreamer Utilities) 0.2 March 30, 2010 21

